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Abstract
Purpose. CO2 absorbents convert sevoflurane to
fluoromethyl-2,2-difluoro-1-(trifluoromethyl) vinyl ether
(compound A), whose toxicity in rats raises concern regard-
ing the safety of sevoflurane in a low-flow system. The type of
CO2 absorbent is one of factors that affect compound A con-
centration in the anesthetic circuit. The aim of the present
study was to investigate the concentration of compound A in
an anesthetic model circuit following the use of different
brands of soda lime and Baralyme.
Methods. We measured the concentrations of compound A
in four different brands of CO2 absorbent using a low-flow
(1 l·min21 fresh gas) model circuit in which 2% sevoflurane
was circulated. Sodasorb II, Baralyme, Sofnolime and
Wakolime-A were used as CO2 absorbents. The concentration
of compound A was measured hourly, and the temperature of
the CO2 absorbent was monitored.
Results. The maximum concentration of compound A in the
circuit was highest for Baralyme (25.5 6 0.6ppm) (mean 6
SD), followed by Sodasorb II (18.9 6 1.6ppm), Wakolime-A
(16.1 6 0.7ppm), and Sofnolime (15.8 6 1.4ppm). The maxi-
mum temperature was 50.8 6 1.3°C for Baralyme, 48.8 6
1.3°C for Wakolime-A, 47.0 6 1.4°C for Sodasorb II, and 43.5
6 3.9°C for Sofnolime.
Conclusion. The relative concentrations of compound A in
the low-flow circuit were Baralyme . Sodasorb II .
Wakolime-A 5 Sofnolime.
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Introduction

Sevoflurane reacts with the CO2 absorbent used in anes-
thesia, resulting in the generation of fluoromethyl-2,2-
difluoro-1-(trifluoromethyl) vinyl ether (compound A)
[1], which has been reported to be toxic in rats [2–6].
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Since the concentration of compound A in the anesthe-
sia circuit is higher in low-flow sevoflurane anesthesia
than in relatively high-flow anesthesia (flow rates of 3 to
6 l·min21 [7,8]), there has been some controversy regard-
ing the safety of low-flow sevoflurane anesthesia.

Factors that affect compound A concentration in the
anesthetic circuit may include the sevoflurane concen-
tration [2,8–11], CO2 production by the patient [8], ven-
tilation [8], the fresh gas flow rate [7,8], the temperature
of the CO2 absorbent [11–13], the type of CO2 absor-
bent [2,9,10,13–17], the freshness of the CO2 absorbent
[16,18,19], and the water content of the CO2 absorbent
[10,18–21]. In particular, in vitro and in vivo studies
looking at different types of CO2 absorbent have
reported that the concentration of compound A formed
was greater when Baralyme was used than when
soda lime was used [9,15–17]. Soda lime, however, is
commercially available under several brand names.
Although Sodasorb has been investigated extensively,
little is known about the other brands. In the present
study we investigated the formation of compound A in
an anesthetic model circuit after the use of different
brands of soda lime (Sofnolime, Wakolime-A, and
Sodasorb II) and Baralyme. Both the concentration of
compound A in the circuit and the CO2 absorbent tem-
perature were measured.

Materials and methods

The anesthesia machine used was a Modulus CD Anes-
thesia System (Ohmeda, Madison, WI, USA). The four
brands of CO2 absorbent used were Sodasorb II (W.R.
Grace & Co., Lexington, MA, USA), Baralyme (Allied
Healthcare Products, St. Louis, MO, USA), Sofnolime
(Molecular Products, Essex, England), and Wakolime-
A (Wako Pure Chemical Industries, Osaka, Japan).
One kilogram of each fresh CO2 absorbent was placed
in the upper canister, and glass balls were placed in
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the lower canister as filler. Temperature was monitored
in the center of the upper canister. A 3-l latex bag
connected to the Y-piece of the circuit acted as a
compliant “lung,” and CO2 was delivered at a flow
rate of 150ml·min21 into the distal portion of the bag.
The “lung” was ventilated 10 times·min21 with a mea-
sured expired tidal volume of 500ml. The anesthesia
system was loaded for 5min with an initial fresh gas
(100% oxygen) flow rate of 6 l·min21 containing 2%
sevoflurane. Subsequently the fresh gas flow rate was
reduced to 1 l·min21, and the tidal volume setting was
readjusted to maintain the volume of 500ml. The
sevoflurane vaporizer setting was adjusted to maintain
2% sevoflurane in the circuit. Each experiment was
performed for 4h and repeated four times with each
absorbent.

Gas samples were obtained from the inspiratory limb
just beyond the inspiratory valve. Analysis of sevo-
flurane was performed with a Capnomac (Datex,
Helsinki, Finland). The concentration of compound A
was measured every hour in each experiment with a gas
chromatograph (model GC-9A, Shimadzu, Kyoto,
Japan) equipped with a gas sampler (model MGS-5,
Shimadzu, Kyoto, Japan). For gas chromatography, the
column temperature was maintained at 100°C and the
injection inlet temperature was maintained at 140°C.
Nitrogen was used as the carrier gas at a flow rate of
50 ml·min21.

The detector was a hydrogen flame ion detector
(FID), and the column was a glass column 5m in length
and 3mm in internal diameter filled with 20% DOP
Chromosorb WAW (Technolab S.C. Corp., Osaka,
Japan) with a 80/100 mesh. The gas chromatograph was
calibrated with standard calibration gas prepared from
stock solutions of compound A (Maruishi Pharmaceuti-
cal, Osaka, Japan).

Measured values are expressed as means 6 SD. Inter-
group comparisons were performed by one-way analy-
sis variance with Fisher’s protected least significant
difference. A P value of less than 0.05 was considered
statistically significant.

Results

The maximum concentration of compound A in the
circuit was highest with the use of Baralyme (25.5 6
0.6ppm), followed by Sodasorb II (18.9 6 1.6ppm),
Wakolime-A (16.1 6 0.7 ppm), and Sofnolime (15.8 6
1.4ppm) (P , 0.05). The same CO2 absorbent ranking
was obtained at 1-h intervals (Fig. 1). For all absorbents,
the maximum concentration of compound A was ob-
served 2h after the start of the study.

The maximum temperature of the CO2 absorbent was
50.8 6 1.3°C for Baralyme, 48.8 6 1.3°C for Wakolime-

A, 47.0 6 1.4°C for Sodasorb II, and 43.5 6 3.9°C
for Sofnolime. There were significant differences in
the maximum temperature between Baralyme and
Sodasorb II (P , 0.05), Baralyme and Sofnolime
(P , 0.01), and Wakolime-A and Sofnolime (P , 0.01).
There were no significant differences between Bara-
lyme and Wakolime-A, Wakolime-A and Sodasorb II,
or Sodasorb II and Sofnolime.

Discussion

Both the interaction of sevoflurane and the formation of
compound A with different types of CO2 absorbents
have been reported in several in vitro studies [2,10,13–
15,17]. In the studies on the interaction of sevoflurane
with the CO2 absorbent, reactivity was assessed by the
reduction in sevoflurane concentration [2,15,22]. How-
ever, since the concentration of compound A was not
measured, the precise amount of sevoflurane that re-
acted with the absorbent, compared with that simply
absorbed to the absorbent, could not be accurately de-
termined. Even when the total amount of compound A
formed in vitro was measured [10,14], the results ob-
tained in a test tube or a flask may not always represent
those obtained in clinical anesthesia, since the com-
pound A contained in the recirculating gas is partially
absorbed to the CO2 absorbent or degraded to com-
pound B. In the present study, therefore, we used a
standard anesthesia machine and circuit, including a
sevoflurane vaporizer, to measure the concentration of
compound A.

Fig. 1. Comparison of compound A concentrations in the
anesthesia circuit with four CO2 absorbents. Open circles
indicate Baralyme. *P , 0.05 vs Sodasorb II (closed circles),
Wakolime-A (open triangles), and Sofnolime (closed
triangles). †P , 0.05 vs Wakolime-A and Sofnolime. Values
shown are means 6 SD
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To reduce the effect of the other parameters men-
tioned previously that may affect the formation of
compound A, particularly those that are dependent on
the patient, an in vitro system that mirrored the human
lung was utilized. In this system, a 3-l latex bag was
connected to a model circuit, and CO2 gas was delivered
at 150 ml·min21. This rate of CO2 gas delivery was deter-
mined to be appropriate on the basis of our previous
measurements of CO2 elimination by the patient during
anesthesia [9].

Our study demonstrated that the concentration of
compound A in the circuit was higher for Baralyme,
followed by Sodasorb II, Wakolime-A, and Sofnolime
in descending order. The finding that Baralyme pro-
duced greater amounts of compound A than Sodasorb
II is in agreement with previous studies [9,15–17].
Cunningham et al. [13] also found that the concentra-
tion of compound A was lower when Sofnolime was
used than when Baralyme or Sodasorb II was used, but
the data were not statistically analyzed. The lower con-
centration of compound A produced with the use of
Sofnolime or Wakolime-A was expected, since both of
these absorbents contain little (Wakolime-A) or no
(Sofnolime) KOH, and sevoflurane is most reactive
with the KOH alkaline component in CO2 absorbents
(Table 1) [13,23]. However, contrasting results have
been reported in two studies. Osawa et al. [17] reported
that the production of compound A was greater
when Wakolime-A was used than when Baralyme or
Sodasorb II was used. The differences between this and
our study may be a reflection of the absorbents used
[13], since they were from different batches, or the fact
that their study was carried out in surgical patients
where the results would be affected by CO2 production
by the patient. Kudo et al. [14] also obtained findings
contrary to ours, however, their experiments were not
performed in a circuit system, which may explain the
different results obtained.

Heat generated by the CO2 absorbent is the result of
the reaction between the CO2 absorbent and CO2 or
sevoflurane. In our experiments, although a constant
volume of CO2 was delivered into the model circuit, the
temperature of the CO2 absorbent differed among the

four samples. Therefore, the differences in temperature
among the four groups can be attributed to the differ-
ences in the heat generated by the reaction between the
CO2 absorbent and CO2 or sevoflurane. In our experi-
ments, there was agreement between the production
of compound A and the temperature of the CO2 ab-
sorbent, except for Wakolime-A. The temperature of
Wakolime-A is considered to be affected by its formula-
tion or water content.

The difference between the circle system in clinical
anesthesia and the model circuit used in the present
study consists in the presence or absence of the water
expired by the patient. However, in the present study
Sodasorb II and Baralyme produced concentrations of
compound A similar to those measured in previous
clinical studies, supporting the notion that there is no
significant difference between the data obtained in the
model circuit and in clinical anesthesia. In addition, the
change in the concentration of compound A over time
was similar to that seen in clinical anesthesia studies
[9,24,25]; the concentration of compound A reached a
peak 2h after the start of anesthesia.

In conclusion, we found that the concentration of
compound A in the anesthetic circuit varied depending
on the type of CO2 absorbent used. The following
descending order of production of compound A was
obtained: Baralyme . Sodasorb II . Wakolime-A 5
Sofnolime. The differences in compound A production
among the different CO2 absorbent brands are probably
due to the differences in their formulations. In particu-
lar, the amount of KOH within the CO2 absorbent is
considered to have a strong influence on compound A
production.
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